Computer Organization and Architecture: A Pedagogical Aspect
Prof. Jatindra Kr. Deka
Dr. Santosh Biswas
Dr. Arnab Sarkar
Department of Computer Science & Engineering

Indian Institute of Technology, Guwahati

Lecture — 17
Control Signals for Complete Instruction Execution

Hello and welcome, to the third unit of the module on control and this unit is concerned with

control signals, for complete instruction execution.

(Refer Slide Time: 00:39)

Units in the Module

Instruction Cycle and Micro-operations
Control Signals and Timing sequence

Control Signals for Complete Instruction execution
Handling Different Addressing Modes

Handling Control Transfer Instructions

Design of Hard-wired Controlled Control Unit
Different Internal CPU bus Organization
Micro-instruction and Micro-program

Organization of Micro-programmed Controlled
Control Unit

So, if you look at flow, in last basically two units we mainly covered about what is a single bus
organization? How different components are connected? and then we have looked into that, for
a given instruction what are the very broad kind of control signals required and what are the

timing diagrams required involved in generating the control signals, to execute the instruction.

In this unit, as we have seen we will actually look into depth, of the control signals how they
are generated in a single bus architecture? And how and we will look in details that how these
control signals are required or executed to implement a complete instruction? That is, we will
take some instructions and we will see, how different control signals generated or required for

the complete instruction execution? That is what is the content of today’s unit.

542

(Refer Slide Time: 01:23)

Unit Summary

+ There are several components inside a CPU, namely, ALU, control unit, general purpose
registers, special purpose registers like instruction register etc. The number and function
of registers RO to R(n-1) vary considerably from one machine to another. They may be
given for general-purpose for the use of the programmer. Alternatively, some of them
may be dedicated as special-purpose registers, such as index register or stack pointers,

+ There are several ways to place these components and interconnect them called
processor organization. Single bus, two buses and three buses are some of the widely
accepted processor organizations.

+ For the execution of an instruction, we need to perform an instruction cycle. An
instruction cycle consists of,

- \Decode cycle
~ EXegution cycle,

+ Control signals in proper sequence are required to be asserted by the control unit to the
components of the CUP in these cycles.

Basically, what will be covering in this unit, the unit summary will basically we will have quick
revisit, as you can see in the first point. We will be quickly revisiting what is a single bus
architecture? Because that is what is mainly we are dealing with all the examples and most of
our study is basically on a single bus architecture. Then we look at where the ALU is
connected? What are the different types of registers? What are the program counters?
Instruction register, their interconnects, all this things we will have a quick reconnect recollect.
Basically, and then because, as we know there are multiple bus structures also like 2 and 3, but
it is slightly more advanced and we are not going to look at in, much details in this course.

Then, we quickly jump to the different cycles of an instruction like fetch, decode execute and
there will exactly see that what are the basic control signals required in each of the cycles and
then we will see that, for which for any cycle, any instruction like fetch, decode and execute
we will see that for some cases, which part of the control instructions or control signals are
similar and for which part, basically it differs like for fetching an instruction, it will be same

for all this instructions because, you have to fetch it from the memory.

So, more or less the control signal sequence will be similar for any instruction in the fetch
phase, decode phase is nothing but basically, you take the instruction from your memory data
register to the instruction register, and try to find out what happens? So, initial part may be
similar and the next part will be different, if for example, if the direct instruction or if it is an

immediate instruction, if it is an indirect instruction for more complicate instructions, we have

543

already seen in the last unit, that we require more cycles | mean execution in terms of control

units and etc.

In fact, in the last class or last unit we are looking at these control instructions, or control signals
in terms of micro instructions. So, more the number of micro instructions or different types of
micro instructions, for a given instruction cycle different will be the control signals. So, that

we will see; how it differs mainly for decode and execute cycle.

(Refer Slide Time: 03:19)

Unit Summary

Step-1 enables:

kﬁ(put the contents of PC to th@ /7,
* Input the contents of the BUS to Memory Address Register L

N7, N C’(
* Main memory in Reatrmede~ Q
-erform addition, (ﬂ'}/
+ Select MUX control so that one operand of ALU Js the constdnt that is required to be

added to the PC to point to the next instruction.

+ Load the output of ALET0 a temporary register.
In the first step the control signals load the value of PC to MAR, increments the value of PC
(to point to next instruction) and stores it in temporary register. Also, memory is set to read
mode,

Step-2 enables:
+ Qutputs the contents of temporary register to Bus
* Input the contents of the BUS to PC,

+ Halt the CPU activity till memory read signal is active

In the second step the control signal loads the updated value of PC (from temporary register
to PC) and halts the CPU activity till memory read signal is active.

Basically, in a nutshell, what we will see? Any first step of the instruction basic instruction
flow that is, basically your the fetch. So, fetch basically what happens? You take instruction
from the memory and basically bring it to the instruction register that is the first part of the

instruction.

So, we will see what basically in the unit, we will first see what are the basic type of control
signal requires to do that, basically what happens first, you see it will output the it shows that
output the contents of the PC to the BUS, there because of the program counter only will point
out, that which instruction has to be executed, then the contents of the bus will be loaded in to
the memory address register, because when the program counter value will be loaded to the

memory address register and the memory is in the read mode.

So, what will happen basically based on the contents of the program counter, basically you will

load the value of your instruction, that is because from the memory address register, it will tell

544

you where the instruction is obtained and it will loaded to the address it will be loaded to the
memory buffer register or the memory data register and. In fact, also in this instruction you
will also have to increment the program counter to point to the next instruction. So, what we
do? We also instruction the ALU to perform addition, in this case it will add the value of

program counter which is now in the bus, with the increment.

So, if the program if the instructions are 1 bit, 1 memory with sorry in 1 memory word then,
you will add 1 and in other case, if it a 2 word instruction we will add 2 and so, forth. So,
basically the first step of the instruction, basically loads the instruction from the memory to the
instruction register, it initiates and it will also increment value of program counter to point to
the next location, then you select the mux control that is one operand of ALU to the constant,

that is you are going to add program counter whose value is in the bus to a constant.

So, we have already seen in the last class that basically in the ALU one of the operand can be
a constant or a register value. In this case we keep it as a constant, the constant value here is
nothing but it is the length of the new instruction; that means you are by adding it to the present

value of the program counter; we will point to the next instruction.

Then we will load the value of ALU to a temporary register. So, the temporary register now
has the value of PC = PC + this content. So, what happens in the first stage, basically what we
have done if you can look at the last comment, what it says? In the first step load the value of
program counter to the memory address register, increment the value of PC and store it in a
temporary register, also the memory is set to read mode; that means, now your memory is

pointing towards the at the memory location, where the current instruction is there.

So, that it can be read into memory buffer register in the next step, and program counter has be
incremented, but the increment value of program counter is now in a temporary register, not
yet uploaded to the program counter. Next what you do? Next output the content of the
temporary register to the bus and input the content of the bus to the PC, because at present the
temporary register is holding the value of PC + constant, you have to dump it to the bus and
the bus value will be dump to PC. So now, the program counter will have the value of PC = PC

+ 1.

Now you have to wait till the memory signal is ready, basically what happens, whenever we
are giving a read command and you have given the data that is the PC value to the memory

address register, you have to wait for some amount of time, till the memory says that I am ready

545

and the instruction is now loaded into the memory buffer register. So, basically in this second
step, this control signal loads the updated value of PC, from the temporary register to PC and
halts the CPU till the memory read signal is active, that is what it is done output the content of
the temporary register to the bus, because temporary register as you have seen in the previous

instruction has the value of PC + constant.

Then input the value of bus to PC. So now, PC is incremented because we no longer require

the PC value as of now, because the PC has been loaded to the memory address register.

(Refer Slide Time: 07:07)

Unit Summary
Step-3 enables: ‘
* Outputs the contents t-u.-u
+ Input the contents of the BUS to Instruction Register (IR
In the third step the control signal loads value of M’D_R_t#her the memory read $fgnd
active, So, now the IR has the instruction that needs to be Executed.

Step-4 enables;
+ The value 0@!.8., the memory location from which data is to be reag)is Iogdad_mto

the MAR from the IR.
The memory control signal is mad@ because the contents of the memory location
specified in the IR needs to be loadedtirfto the MDR (in 5™ contrg¥step after WMFC), M

Step-5 enables:

ep-6 enables:
+ The value present in the MOR (i.e,, the operand) is loaded into register

In the third stage, what happens? Outputs the memory data register to the bus, because in
second step you already know that, the memory has is now ready after the memory says that it
has it is ready, that it has dumped the content of the memory value, which was pointed by the
memory address register to the memory data register and whenever it say that | am ready, the
second stage starts, in second stage what will sorry third stage starts, whenever the memory
says that | am ready. So, the memory data register value will be content will dumped to the
bus. So, what was in the memory data register? It was the point of the memory that was being

pointed by program counter, basically it was containing the instruction.

So, the bus value will now go to the instruction register. So, in this third stage what happened,
the instruction is now loaded into the instruction register, from the memory data register. So,
the third step the control signal loads the value memory data register to the instruction register

after the memory read signal is active; that means, the memory has said that whatever was

546

required by me, what was what was asked from me to be dumped to the memory data register

is now ready, you can read it.

So, after the third stage the instruction has the IR has the instruction, that need to be executed.
One important point to be note that step 1 and step 2 and step 3 are actually implying the
memory fetch, that is instruction fetch. Instruction fetch means you load using the value of the
PC, point to the location in the memory where the instruction is stored, increment the value of
PC and then dump the increment the value of PC by the arithmetic logic unit, by adding a
constant the PC is incremented at the same time you have to wait, till the memory says | am
ready. Once it is ready, take the value of the memory data register sorry memory data register
or the memory buffer register and dump it into the IR register, instruction register via the bus,
this will be same this three stages or the three micro instruction and the control signals will be

same for any instruction.

Because, they correspond to fetching a instruction, after that step 4, 5, 6 actually depends on
what are the type of instruction it is? What is the addressing mode? And what it pertains to?
And what is to be done? For example, the value of M the memory location from which the data
is to be read, is located is loaded into the memory address register from the instruction register,
what is it saying? It is saying that now your instruction register IR, is having the value of your

opcode and also you have some say R1 some instruction example | am taking and some M.

So, basically what it is saying? Or. In fact, let us make it simple instead of R1, let us called it
accumulator. So, it is saying that you have to take one operand from the memory location which
is M. So, in this case what will happen? This address will be loaded to the memory address
register so that in the next cycle, you can fetch the value from the memory location which is

given in this point.

So, you can see 4 step 4 says that, the memory location memory is made read, because you
have to read the operand and the value of M is loaded into the memory address register, from
the IR; that means, the IR is now being decoded and it is going to execute. So, before execution,
it is decoded that is has to read the value of the operand from the memory, whose location is
M. So, that value is loaded to the memory address register, this part is done by step 4, but in

fact you have to remember that it is very, very instruction specific.

If it is an immediate mode of operation, then such a stage will not occur so that means, 456 7

8 like that, it will depend on different type of instruction mode or the instruction type, again

547

you are in a read mode. So, in the step 5 you have to wait till the memory says that, | am ready
because now in this first 1 2 3 stage you are reading the instruction, from step 4 5 and 6 in these
steps are involved with reading the operand from the memory. So, you are saying that wait for
the memory to respond. So, again once the memory has responded, now the value of M that is
you have to load the value that is the operand, which was stored in the memory location M it is

now loaded into the memory data register.

Now, in fact, if you remember that whatever data now we are loading in step 5 is a data and
not an instruction. So, will not go to IR basically, it will be added with if the opcode is load.
So, basically it will actually load the value, in accumulator or R1 in this case it is called R1, but
our example was for accumulator. 6th is the present value in the memory data register is loaded
into the register; that means, here | have mentioned accumulator, but it can be R1 R2 anything.
So, basically 6th step actually executes the instruction, it takes the value from the memory
location memory M which is now present in the memory buffer register. So, one so, this one is

actually presented in memory data register or the memory buffer register.

Step 5 clears, that memory is searching if memory is ready, data is available in the memory
data register and then in the 6th stage, you will dump the value of the memory data register
basically, which is containing this operand into the accumulator or register R1 so. In fact, 1 2
3 again | am repeating this is actually summary, which we will be covering in this unit for
different type of instructions. So, step 1 step 2 step 3 that is instruction fetch will be similar for

everything, 4 5 6 7 8 9 will depend on the instruction type.

548

(Refer Slide Time: 12:20)

Unit Objectives

* Comprehension: Explain:-- Explain the
generation of control signals that is
driven by the internal organization of
the processor.

* Synthesis: Design:--Explaining the
design of complete control steps to
execute the instructions like ALU
operation, Data movement, etc.

So basically what are the basic objectives of the unit the first is a comprehension objective in
which case you can explain the generation of control signals, that is driven by the internal
organization of the processor; that means, given a single bus architecture which is the main
focus of this unit, given a single bus architecture you will be able to basically explain, how
different signals are generated for each of the micro instructions in a very detailed manner;
which will require for a complete instruction execution; Then next the design objective, you
can explain the design of complete control steps to execute the instructions like ALU

operation data movement etc.

And there is different operation style like load, data movement, store, auto increment,
decrement for such type of different type of instruction and operand means instruction type of
instructions and their addressing mode, you will be able to design a complete steps that needs
to be followed, for generating the control signals for executing the instructions.

549

(Refer Slide Time: 13:12)

Detailed single bus organization

Now, we are going to again revisit the details system bus architecture, single bus architecture
in details, but again you have to see the slight details we have compared to the previous unit.
So, this is program counter this is your single bus, then you have a memory address register
which is connecting. In fact, actually it is a slight mistake basically. In fact, the memory address

register is a unidirectional bus.

So, it should not be there it’s a unit directional bus so in fact, which is connecting. So, it is
giving the input to the memory. So, whenever depending on read and write mode, the your
memory bus it will dump the value in the memory data register, if it is a read and it is a write,

the data from the memory data register will go to the memory.

This is your instruction decoder which is basically decoding instruction and generating the
control circuits, this is very, very important and who is going to feed to the instruction decoder?
The instruction register. The instruction register will again get the value from the bus and it
will go to the instruction decoder, which will decode in terms of control signals based on the
instruction to be executed, you can see there are different registers RO to Rn, they are all the
registers like general purpose registers, it will depend on 16 32 48 | mean sorry fixing 32 64

depending on the type of processor you are using.

So, this is the general purpose registers they are a temporary register or scratch pad and this is
very important part you have to look at it. So, this is your arithmetic logic unit part. So, you

can see this is your ALU. So, in the ALU one input is coming from the bus. So, generally it

550

will be service it will actually take one operand, which available in the bus. So, this part or this
part of the ALU the right-hand side part of the input to the ALU, basically taking takes the data
from the bus, which general is an operand, but the left-hand side you can see, it can take data
from a register Y the special register sometimes we call it accumulator. So, it is going to take
the data from the Y as an input or in some other case, is can also take as a constant. So, it is a

multiplexer the multiplexer has select line.

So, now you have to in very importantly keep this in mind that this part. So, either the
accumulator or the ALU will take data from register Y or a constant. So, when it is a constant?
where is basically you have to increment the value of PC. So, whenever you have to increment
the value of PC, at that time the constant will be given, constant will be length of the instruction
and of course, there are different modes of operation in the ALU like add, subtract, increment
that will again tell you based on the operation type, is an add instruction, load instruction, and
sorry load instruction, subtract instruction, increment instruction any type of ALU instruction,
that will be commanding the signals will determine that for example, if you have add 2 numbers

it will be in add mode subtract multiply and so, forth.

But most important is this part, if the value is coming from Y then it is generally an operand
which is already loaded in Y, but if it is you have to increment the value of PC at that time
generally, what we do? We take the value from this constant. So, constant is basically your the
length of the instructions. So, that PC = PC + constant; that means, it points to the next
instruction, in that case select line in the multiplexer will determine that. So, again | request
you that please look at this part in more carefully manner, it is this part please look at it very

carefully ok.

551

(Refer Slide Time: 16:21)

Detailed single bus organization
Program Counter
The program counter (PC) keeps the track of the current instruction being executed. It is a
register that contains the address (location) of the current instruction. After any instruction is
fetched to the instruction register, program counter increases its value by | (or a constant).

So, after cach instruction is fetched, the program counter points to the next instruction in the
Q/wqucncc. () (/
Memory Address Register
hiéh is to be

The memory address register (MAR) hafds thevale of the address location w
read or written, The MAR holds two Kinds of addresdes mllen
address of operand

Memory Data Register
The Memory Data Register (MDR) is a buffer that stores data temporarily which is being
transferred from memory to a register or vice versa, IO device to memory etc,

Arithmetic logic unit

ALU carries out all arithmetic (addition, subtraction etc.) and logic operations (comparison,
XOR etc.). Typically, the ALU has two inputs-- input from the CPU bus (connecting to main
memory, input/output devices ete.) and accumulator (or a register). The output of ALU is
connected to the CPU bus via a register (shown as Z)

So, again we will keep on revisiting this that is not a problem. Now, let us go to this in details.
So, there is a program counter. So, this is your program counter. So, what else | was telling is
written in this. So, basically program counter as we have discussed so many times basically,
holds the present location which has to be executed. So, generally in the first step of control
instruction, or first micro instruction the value of program counter is loaded to the memory

address register and it is incremented.

So, based on that that instruction is fetched and the word stops then there is something called
memory address register, as | told you it actually tells the memory that what value? What
register? What location of that memory has to be read or written? So, generally when you are
fetching an instruction, the value of the program counter will loaded into the memory address.
If there is a store instruction, then when you are saying that store accumulator to memory
location M, in that case the M that, will be actually present in the instruction that value will be
taken from the instruction register the M and it will loaded to the memory address register. So,
basically memory address register tells that basically, means which memory word has to be

read or written.

So, therefore, actually the two kind of addresses, one the address of an instruction that is
generally taken from the program counter and address of an operand. So, address of operand
address, of an operand is available in the instruction. So, it is generally taken from the

instruction register ok. So, next is the data memory data register as you look at this slide. So,

562

memory data register is nothing but a buffer, which will take the data from the memory, to the
bus before that if you think that, this is your memory and this is your data bus. So, | generally

have a buffer over here, which is the memory data register or memory buffer register.

(Refer Slide Time: 17:48)

Detailed single bus organization

Program Counter

The program counter (PC) keeps the track of the current instruction being executed. It is a

register that contains the address (location) of the current instruction. After any instruction is

fetched to the instruction register, program counter increases its value by | (or a constant) D@
So, after each instruction is fetched, the program counter points to the next instruction in the m

sequence.

Memory Address Register
The memory address register (MAR) holds the value of the address location which is to pe
read or written, The MAR holds two kinds of addresses—(i) the address of an instruction (11) V

address of operand.

Memory Data Register
The Memory Data Register (MDR) is a buffer that stores data temporarily which is being
transferred from memory to a register or vice versa, IO device to memory etc.

Arithmetic logic unit
ALU carries out all arithmetic (addition, subtraction ete.) and logic operations (comparison,

XOR ete.). Typically, the ALU has two inputs-- input from the CPU bus (connecting to main
memory, input/output devices etc.) and accumulator (or a register). The output of ALU is
connected to the CPU bus via a register (shown as Z).

So, basically immediately you cannot read and write from the memory. So, you give a read
command, then you have to wait for certain amount of time then the data from memory will
come to the memory buffer register, and then it will say that | am ready that is data has been
given, then only the bus and read it from the memory buffer register or the memory data
register.

Similarly, if you want to write also, you put the value in memory data register and then you
give a write command to the memory, but you have to wait for some time till the memory say
ok, then you know that the data has been read from the memory data register to the memory.
So, therefore there is a buffer in between.

Then arithmetic logic unit, nothing to tell much either it can do all arithmetic and logic
operations, but one important thing basically you can see that it is connected by a IR; that
means, what? That is because you have to in | mean, because the output of the ALU will be
dumped to IR which is a register. So, that it holds for some amount of time that is for one clock

unit of time.

5563

So, that it can be given to the respective place. So, the output of ALU is stored in a register
called IR, which holds it for some time before you take the value and the ALU can be reused.
Because if | don’t store the value of register, if | don’t store the value of the output of ALU in
the IR, then you can have some kind of problem like there can be overwritten, that may be |
am storing the value of 3 which | have got in the last clock part, but if | don’t store over here,
then actually some new value comes over here, there can be a corruption in the output. So,
therefore, we have a temporary register or a register of a Z, which holds the value of ALU

output for some amount of time that is what the arithmetic logic unit.

(Refer Slide Time: 19:30)

Detailed single bus organization

Instruction register
Instruction register (IR) is a register that stores the instruction currently being executed

or decoded.

Instruction decoder W
Instruction Decoder decodes an Instruction and generates the corresponding control

signals. For example, if there is an ADD instruction then the IR generates signals that
enable the ALU to perform addition

Registers
As shown in the figure there are user programmable fegisters RO to R(n-1).

Multiplexer and Constant
One input of the multiplexer is from register Y and the other is a constant. The input

from Y is taken in case of an ordinary arithmetic/logic operation. On the other hand, if
the adder of ALU is used to increment PC then instead of the input from Y, a constant is

taken as input. The value of the constant depends on the memory organization.

Instruction register, nothing to tell more it take the instruction and knows what to do.
Instruction decoder, basically it’s a normal decoder circuit it will take the instruction, because
all instruction has first is opcode. So, will take the opcode and accordingly generate control
signals, corresponding to that opcode. Registers as | told you shown from RO to R(n — 1), they
are all general common registers, it depends basically on what is your processor type? And

what is your processor?

So, it can range from 4 to 32 registers and so forth. Then we have multiplexer and constant.
So, this part already | have told you many times right now, but again let us focus. So, what it
says is this part. So, this is your ALU and this is your register, basically this is your mux and
this one. So, basically as | told you, the ALU can either take input from Y then it will be an

operand, or it can take a via multiplexer it is constant. So, if it is constant means it is for the

554

incrementing of the PC. So, that is what has been told over here, that multiplexer and constant
what are the meaning? Basically, instated of Y if it is an operand, it will take the value from the

constant which is for increasing the value of program counter.

(Refer Slide Time: 20:36)

Single bus organization: Instruction Execution

“LOAD R@whe e, M is a memory location) K\Q

Task of the instruction: Load the content of Memory Location M in Register R1. We assume
that length of instruction is 1 (constant)

The fetch operation basically involves loading the value of PC to MAR and fetch the
instruction from the memory location (specified in PC) to the IR

So, with this basic background in mind, we will now see for different instructions, what are the
control signals generated? In full flow of instruction, now one thing before we go one thing we
have to remember, that for example, there is something for everything there is a command
involved in and out. So, for example, if | want to say that the value of register IR has to be
dumped to the CPU bus, then you will write Z,,,.; that means, the value of /R would be dumped
to the bus for example, the value of PC, but PC has to read the value from the bus. So, in that
case what we will do? You will write PC,; that means, what PC is going to take the input from
the bus, as already discussed in the last unit you cannot have simultaneously Z,,,; and PC,,;, in

this case PC will be dumping over here IR will be dumping over there is a conflict.

So, those things has to be actually avoided correct? So, sorry so now, what we will do? | think
a slight mistake in bus. So now, what will do? Now basically we will take this instruction LOAD
R1, M. So, R1 is one register general purpose register, M is a memory location. So, what will
happen you read the value of memory location M, whatever variable value is this is operand

has to be loaded to R1. So, that is what are going to do.

So, first we will fetch this instruction, decode it and then execute we will see all these steps in

details.

5565

(Refer Slide Time: 22:01)

Single bus organization: Instruction Execution

1 ,@ belect=0, Add, Zin
—_—

In the first control step the value in the PC is loaded into the MAR and the control signals are
PC,., and MARin. At the same control step we need to make the memory control signal as
READ because the contents of the memory location specified in the PC needs to be loaded
into the IR (in 3" control step after WMFC),

Also in this control step we initiate to increment PC to point to the next instruction. For this
we make control signal select=0 so that constant is fed to ALU as one of its inputs, The ALU
adds the constant with present value of PC (fed through the CPU bus). Control Zin enables
loading of the ALU (i.e., PC+ constant) output to register Z.

2. Zout, PCin, WMFC

In the second control step the updated value of PC that is in register Z (1** control step) is
loaded into the PC; this is achieved by control signals Zout and PCin. Also, in this step we wait
for memory to respond i.e., by signal WMFC. Once MFC is high the value of memory to be
read has been loaded into the MDR. So now the MDR contains the instruction what was
present in the memory location pointed by the PC (in the 1* step).

So, first what is the first step? That you have to as | already told you in the summary, the first
stage actually will involve writing, because 1 2 you want to basically first stage is you want to
fetch this instruction. So, which in which memory location load R1 n is there that has been
actually known by the program counter because, program counter always points to the next
instruction. So, only the program counter can tell you where basically this instruction is at

present in.

So, what happens? The program counter value will be loaded into the memory address register,
and you have to make the memory in the read mode. So, that is what has been said. So, program
counter value is PC,,;, PC,,; means the value of program counter will be dumped to the
memory bus, now where it will go it will go to the memory address register in; that means, the
value of program counter will go to the memory address register; that means, now you are
pointing to the next instruction, which has to be fetch you are making it READ that the memory
is in READ mode.

Now, this part actually correspondence to PC,,,.,, memory address register in and READ this 3-
control signal basically specifies that, | have to read the next instruction from the memory
which is pointed by PC. Now, you can see it is making select 0 add and Z;,,. So, what does that
mean if select here means select 0 means, will again see it is corresponds to multiplexer, select
0 means you have to add the constant and not the value of Y, add here means what? Add here

means the ALU is in add mode and Z;,, means the register IR will take the value in from the

556

ALU. So, let us look at it what does it mean, we will be revisiting it many times. So, what is

was saying? It is saying that PC,,;.

(Refer Slide Time: 23:45)

Detailed single bus organization

So, PC,,; means, it is going to give value over here in the bus, it was saying memory address
register in; that means, the value of program counter is going to the memory address register
at the same time it was saying select is 0, if the select is 0 means the constant will be fed over
here. So, the memory address register PC value is going to the memory address register, as well
as it is directly coming to the ALU by this path because, it is in the bus PC program value PC

counter is in the bus.

So, this is what is the case and we are say that is why select is equal to 0, and at the same time
we are saying that Add; that means, you are going to add it and we also saying Z,,,; that means,
what? Your PC,,. value is going to the memory address register, at the same time the other
input to the ALU is PC, this part you are going to say select 0. So, your select a constant, if the
instruction size is a 1. So, you are going to get put it 1, and you are going to get as 1 and Z;,,;
that means, the output of ALU which is nothing but PC = PC + 1 is going to be set. So, you
are executing 3 basic things, you are incrementing the value of program counter by the ALU,
loading the value in IR and also you are loading the value of program counter to the memory
address register so, that the instruction can be fetched, at the same time memory also has been

made in a Read mode. So, these are the signals which corresponds to the first stage.

557

